Three questions, one answer*Neutrinos as the key to the universe as we know it*

Yuval Grossman

Cornell

Three birds

Three open questions in physics

- How neutrinos acquire theirtiny masses?
- Why is there only matter in theuniverse?
- Why the electron and protonhave exactly the same charge?

It is plausible that one mechanism answers all three questions

Outline

- A short introduction to HEP
- **Q1: Neutrinos**
- Q2: Matter and anti-matter
- Q3: Electric charge quantization \bullet
- **Conclusion: A possible answer and what next**

Introduction to HEP

What is HEP

A very simple question

Building Lagrangians

- Choosing the generalized coordinates (fields)
- Imposing symmetries and how fields transform (input)
- The Lagrangian is the most general one that obeys thesymmetries
- We truncate it at some order, usually fourth

The Standard Model (SM)

It explains almost everything we see in Nature

- The symmetry is *SU*(3) $_C \times SU(2)$ $_L \times U(1)_Y$
- There are three generations of fermions (flavors) andone scalar (Higgs)

$$
Q_L(3,2)_{+1/6}
$$
 $U_R(3,1)_{+2/3}$ $D_R(3,1)_{-1/3}$
 $L_L(1,2)_{-1/2}$ $E_R(1,1)_{-1}$ $H(1,2)_{+1/2}$

- *H* gives *SU*(2) $_L \times U(1)_Y \rightarrow U(1)_{\rm EM}$
- Each group coressponeds to ^a force
- $SU(N)$ is non-Abelian while $U(1)$ is Abelian

Accidental symmetries

Two kinds of symmetries

- Input: symmetries we impose
- Output: symmetries due to the truncation (accidental)
- Example: The period of ^a pendulum does not dependon the amplitude

The accidental symmetries of the SM

- The SM has baryon number and lepton number asaccidental symmetries
- That explains why the proton is stable
- There are fundamental differences between baryonnumber and electric charge conservations
	- **Electric charge conservation is imposed while** baryon and lepton numbers are not
	- **Electric charge comes with a force (the EM force)** while baryon and lepton numbers do not

1: Neutrino masses

What are neutrinos

- **O** Neutral fermions
- They appear massless to ^a very good approximation(we did not detect them traveling slower than light)
- They come with three flavors: *νe*, *^ν^µ* and *ντ*
- Think of flavor as an "new" observable: \hat{F}
- **Generally speaking**

$$
m_{\nu} = 0 \Rightarrow [H, F] = 0 \qquad m_{\nu} \neq 0 \Rightarrow [H, F] \neq 0
$$

• Non conservation of flavor is a sign for massive neutrinos

Probing neutrino masses

- Direct searches are not sensitive to very small masses
- Neutrino oscillation experiments are sensitive to*mν*
- For example: producing*^νµ* and detecting *ντ* far away
- Many different experiments found clear evidences forneutrino oscillations that give

$$
m_{\nu} \sim \text{few} \times 10^{-2} \text{ eV}
$$

Compared to $m_e \sim 10^6 \; \text{eV}$ and $m_P \sim 10^9 \; \text{eV}$

neutrinos have tiny masses

Neutrino masses in the SM

The SM implies that neutrinos are exactly massless

- We need to add something to the SM
- There are several ways to extend the SM such that neutrinos are massive
- One idea: add ^a "sterile" heavy fermion to the SM, *N*

Why such ^a new particle lead to massive neutrinos?

m_ν $\psi \neq 0$: A 2nd look at 2nd order PT

- Small corrections to energies due to the wholespectrum
- We can reverse the logic: The correction is ^a way toprobe the high energy states
- Consider a two level system with $E_1 \gg E_0$

$$
\Delta E_0 \propto \frac{|\langle 0|\Delta H|1\rangle|^2}{E_0 - E_1} \sim \frac{1}{E_1}
$$

- We see the sensitivity to the "heavy" states
- In high energy physics, $E\to m$

Neutrino masses

The heavy fermion*N* gives mass to the light neutrino due to 2nd order perturbation theory

$$
m_{\nu} \sim \frac{m_W^2}{M_N}
$$

The scale is $M_N \lesssim 10^{15}$ GeV

- The see-saw mechanism
- Lepton number is broken

What is the mechanism that gives neutrinos theirmasses? In particular, is it related to*N*?

2: Matter, anti-matter and CPV

Matter, anti-matter and CPV

- We know anti-matter exists. The positron seems to be an exact "mirror image" of the electron
- The formal transformation between them is called CP
- Matter and anti-matter cannot coexist. When they meet they annihilate
- The universe has ^a net positive baryon number
- In the SM baryon number is an accidental symmetry. We expect the same amount of matter and anti-matter, basically zero
- Measurements (BBN and the CMB) imply

$$
\eta \equiv \frac{n_B}{n_\gamma} = \text{few} \times 10^{-10}
$$

Baryogenesis

$$
\eta \equiv \frac{n_B}{n_\gamma} = \text{few} \times 10^{-10}
$$

The questions

- Why is there only matter around us? \bullet
- Can we explain the measured number? \bullet

Ways to baryogenesis

There are several logical possibilities

- Initial conditions are such that n_B $\neq 0$
- Separation: we are here, they are there
- Dynamical generation of baryons in the early universe

The third possibility looks much more attractive

The Sakharov conditions

The three Sakharov conditions for dynamically generatedbaryon asymmetry

Baryon number violating process

$$
X \to p^+ e^-
$$

C and CP violation

$$
\Gamma(X \to p^+e^-) \neq \Gamma(\overline{X} \to p^-e^+)
$$

Deviation from equilibrium

$$
\Gamma(X \to p^+e^-) \neq \Gamma(p^+e^- \to X)
$$

SM baryogenesis

The three Sakharov conditions are satisfied in the SM

- Baryon number violating process: sphalerons
- The weak interaction violates C and CP
- Out of equilibrium from the electroweak phasetransition

In principle, the SM can generate ^a world with matter

The problem of SM baryogenesis

While the SM makes baryons, it is not efficient enough

$$
\eta_{\rm SM} \sim 10^{-25} \ll 10^{-10}
$$

An open question is therefore:

What is the source of thebaryons in the universe?

Leptogenesis

- Using the N that was postulated for neutrino masses $\,$
- Dynamic generation of lepton number via *^N* decay
- Since this occurs at very high temperature, the sphalerons convert lepton asymmetry to baryonasymmetry
- For this to work $M_N \gtrsim 10^{11}$ GeV

What is the mechanism that generates baryons in the universe? In particular, is it related to*N*?

Q3: Why $y q_e =$ $=-q_P?$

Ways for charge quantization

Why all charges are ^a integert times*qe/*3 while the massesare all over the place?

Several ideas

- **Just an accident**
- Dirac quantization
- $U(1)_{\rm EM}$ is part of a rotation in a larger space

Charge quantization

What is charge? The amount of rotation

 $\psi \rightarrow e^{i q \theta} \psi$

- Think of rotation in 2 and 3 dimensions
- 2d: $r \rightarrow e^{iq\theta} r$ for any q a number
- 3d: $r \rightarrow e^{iq_i\theta_i}r$ where q_i is a matrix and $[q_i,q_j] = i\epsilon_{ijk}q_k$
- *q* is quantied if the 2d rotation is part of ^a 3d rotation

Non-Abelian symmetries implycharge quantization

GUT

- GUT: The SM symmetry group is ^a part of ^a biggergroup
- In that case, all the SM fields are part of ^a bigger \bullet multiplet (like *^e* and *^ν* in the weak interaction)
- The GUT group is broken to the SM one

$$
\boxed{\quad \text{GUT implies } q_e = -q_P \quad }
$$

GUT: how it works?

- All the SM fields are part of a bigger group
- Our best candidate for GUT is *SO*(10)

 $SO(10) \rightarrow SU(3) \times SU(2) \times U(1)$

- In the SM we have 15 DoF, and in *SO*(10) we need ¹⁶
- The one more field that we need is not charged underthe SM. It has the same properties as N
- Its mass is of the order of the GUT breaking scale
- What is the scale associated with the breaking?

GUT scale

 M_{GUT} $T \sim 10^{16} \text{ GeV} \Rightarrow M_N \lesssim 10^{16} \text{ GeV}$

GUT: the question

Is GUT realized in Nature?In particular, is N part of it?

All together now

All together now

- Why are neutrinos massive?
- How we ended up in ^a universe with matter?
- Do we have ^a GUT?

It all points to that newparticle,*N*

Can the same*N* do it all?

Can the same *^N* do it all?

What next?

Many experiments are running and others are planed

- **to look for CP violation in neutrino oscillations**
- to search for proton decay \bullet
- to observe neutrinoless double beta decay

We expect to see signals in all of them

Conclusions

Conclusions

(maybe) Thanks the neutrinos that we are here

